Short-Term Memory Capacity in Networks via the Restricted Isometry Property

نویسندگان

  • Adam S. Charles
  • Han Lun Yap
  • Christopher J. Rozell
چکیده

Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Correlation Between Coping Styles And Short Term Memory In Type1 ,2 Diabet And Healthy Group

Abstract Background:  Diabetes is a major public health problem globally with an increasing disease trend. The Specific problems of patients in the control and treatment of this disease, which is caused great challenges of everyday life using coping behaviors necessary to better adaptability . Stress can interfere with memory by mechanisms that directly affect brain function. Deploying an appr...

متن کامل

The relationship between working memory and L2 reading comprehension

Since  an  important  role  for  working  memory  has  been  found  in  the  first  language acquisition  (e.g.,  Daneman,  1991;  Daneman  &  Green,  1986;  Waters  &  Caplan,  1996), research  on  the  role  of  working  memory  is  emerging  as  an  area  of  concern  for  second language  acquisition  (e.g.,  Atkins  &  Baddeley,  1998;  Miyake  &  Freidman,  1998; Robinson,  1995,  2002,  ...

متن کامل

P7: The Roles of Long-Term Memory on the Organization of the Knowledge for Educators

Modern neuroscientific research help to solve the impotent challenge in curriculum design and teaching for enhancing students’ ability to organize information in a way that makes it efficient in response to an appropriate context such as problem solving and critical thinking via knowing about the mechanism of different type of memories especially long term memory. At first, we should to c...

متن کامل

On the Certification of the Restricted Isometry Property

Compressed sensing is a technique for finding sparse solutions to underdetermined linear systems. This technique relies on properties of the sensing matrix such as the restricted isometry property. Sensing matrices that satisfy this property with optimal parameters are mainly obtained via probabilistic arguments. Given any matrix, deciding whether it satisfies the restricted isometry property i...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2014